Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds
نویسندگان
چکیده
منابع مشابه
Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds
The convergence of biofabrication with nanotechnology is largely unexplored but enables geometrical control of cell-biomaterial arrangement combined with controlled drug delivery and release. As a step towards integration of these two fields of research, this study demonstrates that modulation of electrostatic nanoparticle-polymer and nanoparticle-nanoparticle interactions can be used for tunin...
متن کاملBio-inspired detoxification using 3D-printed hydrogel nanocomposites
Rationally designed nanoparticles that can bind toxins show great promise for detoxification. However, the conventional intravenous administration of nanoparticles for detoxification often leads to nanoparticle accumulation in the liver, posing a risk of secondary poisoning especially in liver-failure patients. Here we present a liver-inspired three-dimensional (3D) detoxification device. This ...
متن کامل3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-b...
متن کاملPhysicochemical evaluation, study of stability and drug release kinetics from
Introduction: Acne is a disorder of the pilosebaceous unit of the skin and can present as non inflammatory and or inflammatory lesions. Tretinoin has been used therapeutically for over three decades. It is best known for its comedolytic effects on acne. It also inhibits comedone rupture, thus decreasing inflammatory events. Tretinoin is available in 0.01% to 0.1% as cream, gel or lotion. The ...
متن کامل3D printing scaffolds with hydrogel materials for biomedical applications
3D printing has now been recognized as a very practical technique to create 3D structures with milli-/micron-scale resolution. In tissue engineering, particularly, people utilize 3D printing technique to integrate biodegradable polymers to tissue scaffolds. Hydrogel is highly potential material that provides aqua environment and enables nutrition and oxygen transportation, all of which are requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Angewandte Chemie International Edition
سال: 2017
ISSN: 1433-7851
DOI: 10.1002/anie.201700153